Abstract
The main objective and contribution of this paper was/is the application of our knowledge-based data-mining approach (a fuzzy rule-based classification system) characterized by a genetically optimized interpretability-accuracy trade-off (by means of multi-objective evolutionary optimization algorithms) for transparent and accurate prediction of decentral smart grid control (DSGC) stability. In particular, we aim at uncovering the hierarchy of influence of particular input attributes upon the DSGC stability. Moreover, we also analyze the effect of possible "overlapping" of some input attributes over the other ones from the DSGC-stability perspective. The recently published and available at the UCI Database Repository Electrical Grid Stability Simulated Data Set and its input-aggregate-based concise version were used in our experiments. A comparison with 39 alternative approaches was also performed, demonstrating the advantages of our approach in terms of: (i) interpretable and accurate fuzzy rule-based DSGC-stability prediction and (ii) uncovering the hierarchy of DSGC-system’s attribute significance.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献