Detecting Structured Query Language Injections in Web Microservices Using Machine Learning

Author:

Peralta-Garcia Edwin1ORCID,Quevedo-Monsalbe Juan1ORCID,Tuesta-Monteza Victor1,Arcila-Diaz Juan1ORCID

Affiliation:

1. Escuela de Ingeniería de Sistemas, Universidad Señor de Sipán, Chiclayo 14000, Peru

Abstract

Structured Query Language (SQL) injections pose a constant threat to web services, highlighting the need for efficient detection to address this vulnerability. This study compares machine learning algorithms for detecting SQL injections in web microservices trained using a public dataset of 22,764 records. Additionally, a software architecture based on the microservices approach was implemented, in which trained models and the web application were deployed to validate requests and detect attacks. A literature review was conducted to identify types of SQL injections and machine learning algorithms. The results of random forest, decision tree, and support vector machine were compared for detecting SQL injections. The findings show that random forest outperforms with a precision and accuracy of 99%, a recall of 97%, and an F1 score of 98%. In contrast, decision tree achieved a precision of 92%, a recall of 86%, and an F1 score of 97%. Support Vector Machine (SVM) presented an accuracy, precision, and F1 score of 98%, with a recall of 97%.

Funder

Universidad Señor de Sipán

Publisher

MDPI AG

Reference32 articles.

1. A microservice-based software architecture for improving the availability of dental health records;Valdivia;Int. J. Comput.,2022

2. Database security in RDF terms;Mocean;Sci. Bull.,2023

3. Analysis of SQL injection based on Petri net in wireless network;Wang;J. Inf. Sci. Eng.,2023

4. Countermeasure to structured query language injection attack for web applications using hybrid logistic regression technique;Shagari;J. Niger. Soc. Phys. Sci.,2022

5. A hybrid framework for detecting structured query language injection attacks in web-based applications;Furhad;Int. J. Electr. Comput. Eng.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3