Review of Kalah Game Research and the Proposition of a Novel Heuristic–Deterministic Algorithm Compared to Tree-Search Solutions and Human Decision-Making

Author:

Pekař LiborORCID,Matušů RadekORCID,Andrla Jiří,Litschmannová MartinaORCID

Abstract

The Kalah game represents the most popular version of probably the oldest board game ever—the Mancala game. From this viewpoint, the art of playing Kalah can contribute to cultural heritage. This paper primarily focuses on a review of Kalah history and on a survey of research made so far for solving and analyzing the Kalah game (and some other related Mancala games). This review concludes that even if strong in-depth tree-search solutions for some types of the game were already published, it is still reasonable to develop less time-consumptive and computationally-demanding playing algorithms and their strategies Therefore, the paper also presents an original heuristic algorithm based on particular deterministic strategies arising from the analysis of the game rules. Standard and modified mini–max tree-search algorithms are introduced as well. A simple C++ application with Qt framework is developed to perform the algorithm verification and comparative experiments. Two sets of benchmark tests are made; namely, a tournament where a mid–experienced amateur human player competes with the three algorithms is introduced first. Then, a round-robin tournament of all the algorithms is presented. It can be deduced that the proposed heuristic algorithm has comparable success to the human player and to low-depth tree-search solutions. Moreover, multiple-case experiments proved that the opening move has a decisive impact on winning or losing. Namely, if the computer plays first, the human opponent cannot beat it. Contrariwise, if it starts to play second, using the heuristic algorithm, it nearly always loses.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction,Communication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3