Mandible Integrity and Material Properties of the Periodontal Ligament during Orthodontic Tooth Movement: A Finite-Element Study

Author:

Huang Heng-Li,Tsai Ming-Tzu,Yang Shih-Guang,Su Kuo-Chih,Shen Yen-Wen,Hsu Jui-Ting

Abstract

We used the finite-element method (FEM) to investigate the effects of jawbone model integrity and the material properties of the periodontal ligament (PDL) on orthodontic tooth movement. Medical imaging software and computer-aided design software were used to create finite-element models of a partial and complete mandibles based on dental cone beam computed tomography images of the human skull. Additionally, we exerted an orthodontic force on the canine crown in the direction of an orthodontic miniscrew under a lower molar root to compare the von Mises strain on the canine PDL in three models: a partial mandible model under orthodontic force (Model 1), a complete mandible model under orthodontic force (Model 2), and a complete mandible model under orthodontic force with clench occlusion in the intercuspal position (ICP; Model 3). Additionally, in the complete mandible model under orthodontic force with ICP occlusion, we analyzed the effects of a PDL with a low (Model 4), moderate (Model 5), and high (Model 6) linear elastic modulus and a PDL a bilinear elastic modulus (Model 7). The simulation results for mandible integrity indicated that the maximum von Mises strains on the canine PDL for Models 1, 2, and 3 were 0.461, 0.394, and 1.811, respectively. Moreover, for the models with different PDL material properties, the maximum von Mises strains on the canine PDLs for Models 4, 5, 6, and 7 were 6.047, 2.594, 0.887, and 1.811, respectively. When the FEM was used to evaluate tooth movement caused by orthodontic force, the transformation of a complete mandible model into a partial mandible model or alteration of the elastic modulus of the PDL influenced the biomechanical responses of the PDL. Additionally, the incorporation of daily ICP occlusion resulted in a larger effect.

Funder

Ministry of Science and Technology, Taiwan

China Medical University, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3