Person Re-Identification Method Based on Dual Descriptor Feature Enhancement

Author:

Lin Ronghui1,Wang Rong12,Zhang Wenjing1,Wu Ao1,Sun Yang1,Bi Yihan1

Affiliation:

1. School of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, China

2. Key Laboratory of Security Prevention Technology and Risk Assessment of Ministry of Public Security, Beijing 100038, China

Abstract

Person re-identification is a technology used to identify individuals across different cameras. Existing methods involve extracting features from an input image and using a single feature for matching. However, these features often provide a biased description of the person. To address this limitation, this paper introduces a new method called the Dual Descriptor Feature Enhancement (DDFE) network, which aims to emulate the multi-perspective observation abilities of humans. The DDFE network uses two independent sub-networks to extract descriptors from the same person image. These descriptors are subsequently combined to create a comprehensive multi-view representation, resulting in a significant improvement in recognition performance. To further enhance the discriminative capability of the DDFE network, a carefully designed training strategy is employed. Firstly, the CurricularFace loss is introduced to enhance the recognition accuracy of each sub-network. Secondly, the DropPath operation is incorporated to introduce randomness during sub-network training, promoting difference between the descriptors. Additionally, an Integration Training Module (ITM) is devised to enhance the discriminability of the integrated features. Extensive experiments are conducted on the Market1501 and MSMT17 datasets. On the Market1501 dataset, the DDFE network achieves an mAP of 91.6% and a Rank1 of 96.1%; on the MSMT17 dataset, the network achieves an mAP of 69.9% and a Rank1 of 87.5%. These outcomes outperform most SOTA methods, highlighting the significant advancement and effectiveness of the DDFE network.

Funder

Double First-Class Innovation Research Project for People’s Public Security University of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3