An Online 3D Modeling Method for Pose Measurement under Uncertain Dynamic Occlusion Based on Binocular Camera

Author:

Gao Xuanchang12,Yu Junzhi13ORCID,Tan Min12

Affiliation:

1. State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

2. School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China

3. State Key Laboratory for Turbulence and Complex Systems, Department of Advanced Manufacturing and Robotics, Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), College of Engineering, Peking University, Beijing 100871, China

Abstract

3D modeling plays a significant role in many industrial applications that require geometry information for pose measurements, such as grasping, spraying, etc. Due to random pose changes in the workpieces on the production line, demand for online 3D modeling has increased and many researchers have focused on it. However, online 3D modeling has not been entirely determined due to the occlusion of uncertain dynamic objects that disturb the modeling process. In this study, we propose an online 3D modeling method under uncertain dynamic occlusion based on a binocular camera. Firstly, focusing on uncertain dynamic objects, a novel dynamic object segmentation method based on motion consistency constraints is proposed, which achieves segmentation by random sampling and poses hypotheses clustering without any prior knowledge about objects. Then, in order to better register the incomplete point cloud of each frame, an optimization method based on local constraints of overlapping view regions and a global loop closure is introduced. It establishes constraints in covisibility regions between adjacent frames to optimize the registration of each frame, and it also establishes them between the global closed-loop frames to jointly optimize the entire 3D model. Finally, a confirmatory experimental workspace is designed and built to verify and evaluate our method. Our method achieves online 3D modeling under uncertain dynamic occlusion and acquires an entire 3D model. The pose measurement results further reflect the effectiveness.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graphic Image Segmentation Method based on High-Precision and Fast Algorithm;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3