An Edge-Supported Blockchain-Based Secure Authentication Method and a Cryptocurrency-Based Billing System for P2P Charging of Electric Vehicles

Author:

Akhter A. F. M. SuaibORCID,Arnob Tawsif Zaman,Noor Ekra Binta,Hizal SelmanORCID,Pathan Al-Sakib KhanORCID

Abstract

The popularity of electric vehicles (EVs) is constantly increasing, as they use relatively greener, sustainable energy. However, it is a fact that the charging stations for EVs are yet to meet the demand. It could be a great solution if a peer-to-peer (P2P) charging system could be initiated by anyone who wants to make their garage’s charge points publicly available for commercial purposes, named a home charging station (HCS). In this work, our idea is to bring interested charging stations under a network of nodes and a blockchain-based management system, where the blockchain is responsible for ensuring the authenticity of both the charging stations and charge receiver. A cryptocurrency-based payment system has also been proposed to ensure transactions’ security, integrity, transparency, and immutability. A reputation management system is applied to maintain the quality of service. Miners with high processing power are used to alleviate lagging during block creation, supported by edge servers. The proposed system has been implemented by using virtual machines. A theoretical analysis is presented to assess the compatibility and possible cost requirements to implement the system in a real-world scenario.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference53 articles.

1. A deep reinforcement learning network for traffic light cycle control;IEEE Trans. Veh. Technol.,2019

2. Secure content delivery with edge nodes to save caching resources for mobile users in green cities;IEEE Trans. Ind. Inform.,2017

3. Secure and efficient large content broadcasting in mobile social networks;IEEE Access,2018

4. An edge caching scheme to distribute content in vehicular networks;IEEE Trans. Veh. Technol.,2018

5. Global Status Report (2022, November 01). Renewable Energy Policy Network. Available online: https://www.iea.org/reports/global-ev-outlook-2020.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3