Research on Hydrogen-Induced Induced Cracking Sensitivity of X80 Pipeline Steel under Different Heat Treatments

Author:

Wu Chen1,Yan Chunyan1,Zhang Shenglin1,Zhou Lingchuan1,Shen Mengdie1,Tian Zhanpeng1

Affiliation:

1. College of Materials Science and Engineering, Hohai University, Changzhou 213022, China

Abstract

X80 pipeline steel has played a vital role in oil and gas transportation in recent years. However, hydrogen-related issues frequently lead to pipeline failures during service, resulting in significant losses of properties and lives. Three heat treatment processes (furnace cooling (FC), air cooling (AC), and water cooling (WC)) were carried out to investigate the effect of different microstructures on hydrogen-induced cracking (HIC) susceptibility of X80 pipeline steel. The WC sample demonstrated the highest hydrogen embrittlement index, registering at 21.9%, while the AC and FC samples exhibited progressively lower values of 15.45% and 10.98%, respectively. Under equivalent hydrogen charging durations, crack dimensions with a maximum length exceeding 30 μm in the WC sample generally exceed those in the FC sample and AC sample. The variation is attributed to the difference in microstructures of the samples, predominantly lath bainite (LB) in water-cooled samples, granular bainite (GB) in air-cooled samples, and ferrite/pearlite (F/P) in FC samples. The research results demonstrate that the sensitivity of lath bainite (LB) to HIC is significantly higher than that of pearlite, ferrite, and granular bainite (GB). The presence of a large amount of martensite/austenite (M/A) constituents within bainite results in a multitude of hydrogen trap sites. HIC cracks in bainite generally propagate along the profiles of M/A constituents, showing both intergranular and transgranular cracking modes.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3