An Analysis of ML-Based Outlier Detection from Mobile Phone Trajectories

Author:

Pereira Francisco MeloORCID,Sofia Rute C.ORCID

Abstract

This paper provides an analysis of two machine learning algorithms, density-based spatial clustering of applications with noise (DBSCAN) and the local outlier factor (LOF), applied in the detection of outliers in the context of a continuous framework for the detection of points of interest (PoI). This framework has as input mobile trajectories of users that are continuously fed to the framework in close to real time. Such frameworks are today still in their infancy and highly required in large-scale sensing deployments, e.g., Smart City planning deployments, where individual anonymous trajectories of mobile users can be useful to better develop urban planning. The paper’s contributions are twofold. Firstly, the paper provides the functional design for the overall PoI detection framework. Secondly, the paper analyses the performance of DBSCAN and LOF for outlier detection considering two different datasets, a dense and large dataset with over 170 mobile phone-based trajectories and a smaller and sparser dataset, involving 3 users and 36 trajectories. Results achieved show that LOF exhibits the best performance across the different datasets, thus showing better suitability for outlier detection in the context of frameworks that perform PoI detection in close to real time.

Funder

research unit COPELABS, University Lusofona, Lisbon

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3