Detection of Electricity Theft Behavior Based on Improved Synthetic Minority Oversampling Technique and Random Forest Classifier

Author:

Qu Zhengwei,Li Hongwen,Wang Yunjing,Zhang Jiaxi,Abu-Siada AhmedORCID,Yao Yunxiao

Abstract

Effective detection of electricity theft is essential to maintain power system reliability. With the development of smart grids, traditional electricity theft detection technologies have become ineffective to deal with the increasingly complex data on the users’ side. To improve the auditing efficiency of grid enterprises, a new electricity theft detection method based on improved synthetic minority oversampling technique (SMOTE) and improve random forest (RF) method is proposed in this paper. The data of normal and electricity theft users were classified as positive data (PD) and negative data (ND), respectively. In practice, the number of ND was far less than PD, which made the dataset composed of these two types of data become unbalanced. An improved SOMTE based on K-means clustering algorithm (K-SMOTE) was firstly presented to balance the dataset. The cluster center of ND was determined by K-means method. Then, the ND were interpolated by SMOTE on the basis of the cluster center to balance the entire data. Finally, the RF classifier was trained with the balanced dataset, and the optimal number of decision trees in RF was decided according to the convergence of out-of-bag data error (OOB error). Electricity theft behaviors on the user side were detected by the trained RF classifier.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference55 articles.

1. Electricity theft: a comparative analysis

2. Non-Technical Loss Detection Using State Estimation and Analysis of Variance

3. Reforming the Power Sector, Controlling Electricity Theft and Improving Revenue. Public Policy for the Private Sectorhttp://rru.worldbank.org/PublicPolicyJourna

4. High performance computing for detection of electricity theft;Soma;Int. J. Electr. Power Energy Syst.,2013

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3