Deep Learning-Based Algal Bloom Identification Method from Remote Sensing Images—Take China’s Chaohu Lake as an Example

Author:

Zhu Shengyuan1,Wu Yinglei1,Ma Xiaoshuang2ORCID

Affiliation:

1. China JIKAN Research Institute of Engineering Investigations and Design, Co., Ltd., Xi’an 710000, China

2. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China

Abstract

Rapid and accurate monitoring of algal blooms using remote sensing techniques is an effective means for the prevention and control of algal blooms. Traditional methods often have difficulty achieving the balance between interpretative accuracy and efficiency. The advantages of a deep learning method bring new possibilities to the rapid and precise identification of algal blooms using images. In this paper, taking Chaohu Lake as the study area, a dual U-Net model (including a U-Net network for spring and winter and a U-Net network for summer and autumn) is proposed for the identification of algal blooms using remote sensing images according to the different traits of the algae in different seasons. First, the spectral reflection characteristics of the algae in Chaohu Lake in different seasons are analyzed, and sufficient samples are selected for the training of the proposed model. Then, by adding an attention gate architecture to the classical U-Net framework, which can enhance the capability of the network on feature extraction, the dual U-Net model is constructed and trained for the identification of algal blooms in different seasons. Finally, the identification results are obtained by inputting remote sensing data into the model. The experimental results show that the interpretation accuracy of the proposed deep learning model is higher than 90% in most cases with the fastest processing time being less than 10 s, which achieves much better performance than the traditional supervised classification method and also outperforms the single U-Net model using data of whole year as the training samples. Furthermore, the profiles of algal blooms are well-captured.

Funder

Hefei Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3