Abstract
Fatigue crack growth experiments are performed using A7075-T6 compact tension (CT) specimens with various thicknesses t (1–21 mm). The stress intensity factor at the crack opening level Kop is measured, and the effects of t and the stress intensity factor range ΔK on Kop are investigated. In addition, the change in Kop value due to specimen surface removal is investigated. Furthermore, we clarify that the radius of curvature of the leading edge of the fatigue crack decreases as t becomes thinner. Using the three-dimensional elastoplastic finite element method, the amount of plastic lateral contraction (depression depth d) at the crack tip after fatigue loading is calculated quantitatively. The following main experimental results are obtained: In the region where ΔK is 5 MPam1/2 or higher, the rate of fatigue crack growth da/dN at a constant ΔK value increases as t increases from 1 to 11 mm. The da/dN between t = 11 and 21 mm is the same. Meanwhile, in the region where ΔK is less than 5 MPam1/2, the effect of t on da/dN is not observed. The effects of t and ΔK on the da/dN–ΔK relationship are considered physically and quantitatively based on d.
Subject
General Materials Science
Reference30 articles.
1. Fatigue crack closure under cyclic tension;Elber;Eng. Fract. Mech.,1970
2. The Significance of Fatigue Crack Closure;Elber,2009
3. On crack closure in the near-threshold region
4. A geometric model for fracture surface roughness-induced crack closure during fatigue crack-growth;Suresh;J. Met.,1982
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献