Abstract
Smart cities are characterized by the use of massive information and digital communication technologies as well as sensor networks where the Internet and smart data are the core. This paper proposes a methodology to geocode traffic-related events that are collected from Twitter and how to use geocoded information to gather a training dataset, apply a Support Vector Machine method, and build a prediction model. This model produces spatiotemporal information regarding traffic congestions with a spatiotemporal analysis. Furthermore, a spatial distribution represented by heat maps is proposed to describe the traffic behavior of specific and sensed areas of Mexico City in a Web-GIS application. This work demonstrates that social media are a good alternative that can be leveraged to gather collaboratively Volunteered Geographic Information for sensing the dynamic of a city in which citizens act as sensors.
Funder
Instituto Politécnico Nacional
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献