Abstract
A crop’s health can be determined by its leaf nutrient status; more precisely, leaf nitrogen (N) level, is a critical indicator that carries a lot of worthwhile nutrient information for classifying the plant’s health. However, the existing non-invasive techniques are expensive and bulky. The aim of this study is to develop a low-cost, quick-read multi-spectral sensor array to predict N level in leaves non-invasively. The proposed sensor module has been developed using two reflectance-based multi-spectral sensors (visible and near-infrared (NIR)). In addition, the proposed device can capture the reflectance data at 12 different wavelengths (six for each sensor). We conducted the experiment on canola leaves in a controlled greenhouse environment as well as in the field. In the greenhouse experiment, spectral data were collected from 87 leaves of 24 canola plants, subjected to varying levels of N fertilization. Later, 42 canola cultivars were subjected to low and high nitrogen levels in the field experiment. The k-nearest neighbors (KNN) algorithm was employed to model the reflectance data. The trained model shows an average accuracy of 88.4% on the test set for the greenhouse experiment and 79.2% for the field experiment. Overall, the result concludes that the proposed cost-effective sensing system can be viable in determining leaf nitrogen status.
Funder
Canada First Research Excellence Fund
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献