A Rapid and Accurate Quantitative Analysis of Cellulose in the Rice Bran Layer Based on Near-Infrared Spectroscopy

Author:

Fan Shuang12ORCID,Qin Chaoqi12,Xu Zhuopin1ORCID,Wang Qi13,Yang Yang1,Ni Xiaoyu1,Cheng Weimin1,Zhang Pengfei1,Zhan Yue1,Tao Liangzhi1,Wu Yuejin13

Affiliation:

1. Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. Science Island Branch, Graduate School of USTC, Hefei 230026, China

3. Hainan Branch of the CAS Innovative Academy for Seed Design, Sanya 572019, China

Abstract

Cultivating rice varieties with lower cellulose content in the bran layer has the potential to enhance both the nutritional value and texture of brown rice. This study aims to establish a rapid and accurate method to quantify cellulose content in the bran layer utilizing near-infrared spectroscopy (NIRS), thereby providing a technical foundation for the selection, screening, and breeding of rice germplasm cultivars characterized by a low cellulose content in the bran layer. To ensure the accuracy of the NIR spectroscopic analysis, the potassium dichromate oxidation (PDO) method was improved and then used as a reference method. Using 141 samples of rice bran layer (rice bran without germ), near-infrared diffuse reflectance (NIRdr) spectra, near-infrared diffuse transmittance (NIRdt) spectra, and fusion spectra of NIRdr and NIRdt were used to establish cellulose quantitative analysis models, followed by a comparative evaluation of these models’ predictive performance. Results indicate that the optimized PDO method demonstrates superior precision compared to the original PDO method. Upon examining the established models, their predictive capabilities were ranked in the following order: the fusion model outperforms the NIRdt model, which in turn surpasses the NIRdr model. Of all the fusion models developed, the model exhibiting the highest predictive accuracy utilized fusion spectra (NIRdr-NIRdt (1st der)) derived from preprocessed (first derivative) diffuse reflectance and transmittance spectra. This model achieved an external predictive R2p of 0.903 and an RMSEP of 0.213%. Using this specific model, the rice mutant O2 was successfully identified, which displayed a cellulose content in the bran layer of 3.28%, representing a 0.86% decrease compared to the wild type (W7). The utilization of NIRS enables quantitative analysis of the cellulose content within the rice bran layer, thereby providing essential technical support for the selection of rice varieties characterized by lower cellulose content in the bran layer.

Funder

Major Special Project of Anhui Province

National Natural Science Foundation of China

Research Program of Sanya Yazhou Bay Science and Technology City

Hefei Science and Technology Project

Anhui Science and Technology Major Project

HFIPS Director’s Fund

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3