Protection against Oxidative Stress-Induced Apoptosis by Fermented Sea Tangle (Laminaria japonica Aresch) in Osteoblastic MC3T3-E1 Cells through Activation of Nrf2 Signaling Pathway

Author:

Kim So Young,Cha Hee-JaeORCID,Hwangbo Hyun,Park Cheol,Lee HyesookORCID,Song Kyoung SeobORCID,Shim Jung-HyunORCID,Noh Jeong Sook,Kim Heui-Soo,Lee Bae-Jin,Kim Suhkmann,Kim Gi-YoungORCID,Jeon You-JinORCID,Choi Yung HyunORCID

Abstract

The purpose of the present study was to explore the efficacy of fermented extract of sea tangle (Laminaria japonica Aresch, FST) with Lactobacillus brevis on DNA damage and apoptosis in hydrogen peroxide (H2O2)-stimulated osteoblastic MC3T3-E1 cells and clarify related signaling pathways. Our results showed that exposure to FST significantly improved cell viability, inhibited apoptosis, and suppressed the generation of reactive oxygen species (ROS) in H2O2-stimulated cells. In addition, H2O2 triggered DNA damage in MC3T3-E1 cells was markedly attenuated by FST pretreatment. Moreover, H2O2-induced mitochondrial dysfunctions associated with apoptotic events, including loss of mitochondrial membrane potential (MMP), decreased Bcl-2/Bcl-2 associated x-protein (Bax) ratio, and cytosolic release of cytochrome c, were reduced in the presence of FST. FST also diminished H2O2-induced activation of caspase-3, which was associated with the ability of FST to protect the degradation of poly (ADP-ribose) polymerase. Furthermore, FST notably enhanced nuclear translocation and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the presence of H2O2 with concomitant upregulation of heme oxygenase-1 (HO-1) expression. However, artificial blockade of this pathway by the HO-1 inhibitor, zinc protoporphyrin IX, greatly abolished the protective effect of FST against H2O2-induced MC3T3-E1 cell injury. Taken together, these results demonstrate that FST could protect MC3T3-E1 cells from H2O2-induced damage by maintaining mitochondrial function while eliminating ROS along with activation of the Nrf2/HO-1 antioxidant pathway.

Funder

Ministry of Oceans and Fisheries, Republic of Korea

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3