Energy Intake Evaluation by a Learning Approach Using the Number of Food Portions and Body Weight

Author:

Rousset Sylvie,Médard SébastienORCID,Fleury Gérard,Fardet Anthony,Goutet Olivier,Lacomme Philippe

Abstract

An accurate quantification of energy intake is critical; however, under-reporting is frequent. The aim of this study was to develop an indirect statistical method of the total energy intake estimation based on gender, weight, and the number of portions. The energy intake prediction was developed and evaluated for validity using energy expenditure. Subjects with various BMIs were recruited and assigned either in the training or the test group. The mean energy provided by a portion was evaluated by linear regression models from the training group. The absolute values of the error between the energy intake estimation and the energy expenditure measurement were calculated for each subject, by subgroup and for the whole group. The performance of the models was determined using the test dataset. As the number of portions is the only variable used in the model, the error was 26.5%. After adding body weight in the model, the error decreased to 8.8% and 10.8% for the normal-weight women and men, respectively, and 11.7% and 12.8% for the overweight women and men, respectively. The results prove that a statistical approach and knowledge of the usual number of portions and body weight is effective and sufficient to obtain a precise evaluation of energy intake after a simple and brief enquiry.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3