Predictive Modeling and Validation of Carbon Emissions from China’s Coastal Construction Industry: A BO-XGBoost Ensemble Approach

Author:

Hou Yunfei12,Liu Shouwei1

Affiliation:

1. School of Traffic and Transportation of Engineering, Changsha University of Science and Technology, Changsha 410114, China

2. National Engineering Research Center of Highway Maintenance Technology, Changsha University of Science & Technology, Changsha 410114, China

Abstract

The extensive carbon emissions produced throughout the life cycle of buildings have significant impacts on environmental sustainability. Addressing the Carbon Emissions from China’s Construction Industry (CECI), this study uses panel data from seven coastal areas (2005–2020) and the Bayesian Optimization Extreme Gradient Boosting (BO-XGBoost) model to accurately predict carbon emissions. Initially, the carbon emission coefficient method is utilized to calculate the CECI. Subsequently, adopting the concept of a fixed-effects model to transform provincial differences into influencing factors, we employ a method combining Spearman rank correlation coefficients to filter out these influencing factors. Finally, the performance of the prediction model is validated using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), R-squared (R2) and Mean Absolute Percentage Error (MAPE). The results indicate that the total CECI for the seven provinces and cities increased from 3.1 billion tons in 2005 to 17.2 billion tons in 2020, with Shandong Province having the highest CECI and Hainan Province having the lowest. The total population, Gross Domestic Product (GDP) and floor space of the buildings completed passed the significance test, among a total of eight factors. These factors can be considered explanatory variables for the CECI prediction model. The BO-XGBoost algorithm demonstrates outstanding predictive performance, achieving an R2 of 0.91. The proposed model enables potential decisions to quantitatively target the prominent factors contributing to the CECI. Its application can guide policymakers and decision makers toward implementing effective strategies for reducing carbon emissions, thereby fostering sustainable development in the construction industry.

Funder

Scientific Research Fund of Human Provincial Education Department

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3