Miniature Broadband NIR Spectrometer Based on FR4 Electromagnetic Scanning Micro-Grating

Author:

Huang LiangkunORCID,Wen Quan,Huang Jian,Yu FanORCID,Lei HongjieORCID,Wen Zhiyu

Abstract

This paper presents a miniaturized, broadband near-infrared (NIR) spectrometer with a flame-retardant 4 (FR4)-based scanning micrograte. A 90° off-axis parabolic mirror and a crossed Czerny–Turner structure were used for creating an astigmatism-free optical system design. The optical system of the spectrometer consists of a 90° off-axis parabolic mirror, an FR4-based scanning micrograte, and a two-color indium gallium arsenide (InGaAs) diode with a crossed Czerny–Turner structure optical design. We used a wide exit slit and an off-axis parabolic mirror with a short focal length to improve the signal-to-noise ratio (SNR) of the full spectrum. We enabled a miniaturized design for the spectrometer by utilizing a novel FR4 micrograte for spectral dispersion and spatial scanning. The spectrometer can detect the full near-infrared spectrum while only using a two-color InGaAs diode, and thus, the grating scanning angle of this spectrometer is small when compared to a dual-detector-based spectrometer. In addition, the angle signal can be obtained through an angle sensor, which is integrated into the scanning micrograte. The real-time angle signal is used to form a closed-loop control over the scanning micrograte and calibrate the spectral signal. Finally, a series of tests was performed. The experimental results showed that the spectrometer has a working wavelength range of 800–2500 nm. The resolution is 10 nm at a wavelength range of 800–1650 nm and 15 nm at a wavelength range of 1650–2500 nm. Similarly, the stability of these two wavelength ranges is better than ±1 nm and ±2 nm, respectively. The spectrometer’s volume is 80 × 75 × 65 mm3 and its weight is 0.5 kg. The maximum spectral fluctuation does not exceed 1.5% and the signal-to-noise ratio is 284 after only one instance of averaging.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference32 articles.

1. Micro-opto-electro-mechanical systems: Recent developments and LETI’s activities. Symposium on Applied Photonics;Ollier;Int. Soc. Opt. Photonics,2000

2. Micropackaging technologies for integrated microsystems: Applications to MEMS and MOEMS. Micromachining and Microfabrication Process Technology VIII;Najafi;Int. Soc. Opt. Photonics,2003

3. Micro-opto-electro-mechanical systems

4. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS)

5. MEMS- and MOEMS-Based Near-Infrared Spectrometers

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3