Novel near E-Field Topography Sensor for Human–Machine Interfacing in Robotic Applications

Author:

Skoraczynski Dariusz J.1ORCID,Chen Chao1ORCID

Affiliation:

1. Laboratory of Motion Generation and Analysis (LMGA), Monash University, Clayton, VIC 3800, Australia

Abstract

This work investigates a new sensing technology for use in robotic human–machine interface (HMI) applications. The proposed method uses near E-field sensing to measure small changes in the limb surface topography due to muscle actuation over time. The sensors introduced in this work provide a non-contact, low-computational-cost, and low-noise method for sensing muscle activity. By evaluating the key sensor characteristics, such as accuracy, hysteresis, and resolution, the performance of this sensor is validated. Then, to understand the potential performance in intention detection, the unmodified digital output of the sensor is analysed against movements of the hand and fingers. This is done to demonstrate the worst-case scenario and to show that the sensor provides highly targeted and relevant data on muscle activation before any further processing. Finally, a convolutional neural network is used to perform joint angle prediction over nine degrees of freedom, achieving high-level regression performance with an RMSE value of less than six degrees for thumb and wrist movements and 11 degrees for finger movements. This work demonstrates the promising performance of this novel approach to sensing for use in human–machine interfaces.

Funder

2019 Perpetual IMPACT Philanthropy Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3