Enhanced Efficacy against Drug-Resistant Tumors Enabled by Redox-Responsive Mesoporous-Silica-Nanoparticle-Supported Lipid Bilayers as Targeted Delivery Vehicles

Author:

Yang Shuoye12ORCID,Zhang Beibei1,Zhao Xiangguo1,Zhang Mengwei1,Zhang Mengna1,Cui Lan12,Zhang Lu12

Affiliation:

1. School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China

2. Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, China

Abstract

Multidrug resistance (MDR) is frequently induced after long-term exposure to reduce the therapeutic effect of chemotherapeutic drugs, which is always associated with the overexpression of efflux proteins, such as P-glycoprotein (P-gp). Nano-delivery technology can be used as an efficient strategy to overcome tumor MDR. In this study, mesoporous silica nanoparticles (MSNs) were synthesized and linked with a disulfide bond and then coated with lipid bilayers. The functionalized shell/core delivery systems (HT-LMSNs-SS@DOX) were developed by loading drugs inside the pores of MSNs and conjugating with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and hyaluronic acid (HA) on the outer lipid surface. HT-LMSNs-SS and other carriers were characterized and assessed in terms of various characteristics. HT-LMSNs-SS@DOX exhibited a dual pH/reduction responsive drug release. The results also showed that modified LMSNs had good dispersity, biocompatibility, and drug-loading capacity. In vitro experiment results demonstrated that HT-LMSNs-SS were internalized by cells and mainly by clathrin-mediated endocytosis, with higher uptake efficiency than other carriers. Furthermore, HT-LMSNs-SS@DOX could effectively inhibit the expression of P-gp, increase the apoptosis ratios of MCF-7/ADR cells, and arrest cell cycle at the G0/G1 phase, with enhanced ability to induce excessive reactive oxygen species (ROS) production in cells. In tumor-bearing model mice, HT-LMSNs-SS@DOX similarly exhibited the highest inhibition activity against tumor growth, with good biosafety, among all of the treatment groups. Therefore, the nano-delivery systems developed herein achieve enhanced efficacy towards resistant tumors through targeted delivery and redox-responsive drug release, with broad application prospects.

Funder

Foundation for Key Teacher of Colleges and Universities of Henan province

Key R&D and Promotion projects of Henan Province

Cultivation Programme for Young Backbone Teachers in Henan University of Technology

Natural Science Innovation Fund of Henan University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3