Machine Learning-Based Feature Extraction and Classification of EMG Signals for Intuitive Prosthetic Control

Author:

Kok Chiang Liang1ORCID,Ho Chee Kit2,Tan Fu Kai3,Koh Yit Yan1

Affiliation:

1. College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia

2. Engineering Cluster, Singapore Institute of Technology, Singapore 138683, Singapore

3. School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore

Abstract

Signals play a fundamental role in science, technology, and communication by conveying information through varying patterns, amplitudes, and frequencies. This paper introduces innovative methodologies for processing electromyographic (EMG) signals to develop artificial intelligence systems capable of decoding muscle activity for controlling arm movements. The study investigates advanced signal processing techniques and machine learning classification algorithms using the GRABMyo dataset, aiming to enhance prosthetic control systems and rehabilitation technologies. A comprehensive analysis was conducted on signal processing techniques, including signal filtering and discrete wavelet transform (DWT), alongside a composite feature set comprising Mean Absolute Value (MAV), Waveform Length (WL), Zero Crossing (ZC), Slope Sign Changes (SSC), Root Mean Square (RMS), Enhanced Waveform Length (EWL), and Enhanced Mean Absolute Value (EMAV). These features, refined through Linear Discriminant Analysis (LDA) for dimensionality reduction, were classified using Support Vector Machine (SVM) algorithms. Signal filtering and DWT improved signal quality, facilitating better feature extraction, while the diverse feature set enhanced classification accuracy. LDA further improved accuracy by isolating the most informative features, and the SVM achieved optimal performance in decoding complex EMG patterns. Machine learning models, including K-Nearest Neighbor (KNN), Naïve Bayes (NB), and the SVM, were evaluated, with the SVM outperforming the others. The significance of these results lies in their potential applications in prosthetic control systems and rehabilitation technologies. By accurately decoding muscle activity, the developed systems can facilitate more intuitive and responsive robotic arm movements, contributing to the advancement of innovative solutions for individuals requiring prosthetic devices or undergoing rehabilitation, hence improving the quality of life for users. This research marks a significant step forward in the integration of advanced signal processing and machine learning in the field of EMG analysis.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3