Affiliation:
1. Department of Social and Developmental Psychology, Sapienza University of Rome, 00185 Rome, Italy
2. Mylia—Adecco Formazione s.r.l., 20132 Milano, Italy
Abstract
Artificial intelligence, particularly machine learning, has revolutionized organizational decision-making processes by assuming many decision responsibilities traditionally allocated to humans. In this scenario, decision-support systems based on AI have gained considerable relevance, although the attitudes of managers toward intelligent agents are still unbalanced towards human intervention in decision-making. An additional level of complexity arises when the development of these systems occurs within the context of investments in human capital, such as startup funding or organizational development. In this field, decision-making becomes even more critical, since it implies the will, goals, and motivations of every human actor involved: the investors and those seeking investments. termed multi-actor decision-making, this process involves multiple individuals or groups of individuals who, starting from non-coincident objectives, must reach a mutual agreement and converge toward a common goal for the success of the investment. Considering these challenges, this study aims to apply the design thinking technique as a human-centered methodology to support the design of an AI-based multi-actor decision-support system, conceived by Mylia (The Adecco Group), in the field of organizational development. Additionally, the integration of strategic organizational counseling will be introduced to facilitate the modeling of internal DM processes within the provider organization, enabling the seamless flow of internal behaviors from the decision-support system’s conceptualization to its integration in the external market.
Reference57 articles.
1. Integrating intuition and artificial intelligence in organizational decision-making;Vincent;Bus. Horiz.,2021
2. Lai, V., Chen, C., Smith-Renner, A., Liao, Q.V., and Tan, C. (2023, January 12–15). Towards a Science of Human-AI Decision Making: An Overview of Design Space in Empirical Human-Subject Studies. Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency (FAccT ‘23), Chicago, IL, USA.
3. Co-evolution of platform architecture, platform services, and platform governance: Expanding the platform value of industrial digital platforms;Jovanovic;Technovation,2021
4. European Commission (2018). Artificial Intelligence for Europe, European Commission.
5. Insights from “the machine stops” to better understand rational assumptions in algorithmic decision making and its implications for organizations;Lindebaum;Acad. Manag. Rev.,2020