Affiliation:
1. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
Abstract
In response to asynchronous and delayed sensors within multi-sensor integrated navigation systems, the computational complexity of joint optimization navigation solutions persistently rises. This paper introduces an adaptive fast integrated navigation algorithm for INS/GPS/VO based on factor graph. The factor graph model for INS/GPS/VO is developed subsequent to individual modeling of the Inertial Navigation System (INS), Global Positioning System (GPS), and Visual Odometer (VO) using the factor graph model approach. Additionally, an Adaptive Fast Incremental Smoothing (AFIS) factor graph optimization algorithm is proposed. The simulation results demonstrate that the factor-graph-based integrated navigation algorithm consistently yields high-precision navigation outcomes even amidst dynamic changes in sensor validity and the presence of asynchronous and delayed sensor measurements. Notably, the AFIS factor graph optimization algorithm significantly enhances real-time performance compared to traditional Incremental Smoothing (IF) algorithms, while maintaining comparable real-time accuracy.
Funder
National Key Laboratory on Blind Signal Processing
National Natural Science Foundation of China