Abstract
In-service prestressed concrete box girder bridges have received increasing attention in recent years due to a large number of bridges reaching decades in service. Therefore, the ageing of infrastructure demands the development of robust condition assessment methodologies based on affordable technology such as vehicle-induced vibration tests (VITs) in contrast with more expensive existing technologies such as tests using hammers or shakers. Ambient vibration tests (AVTs) have been widely used worldwide, taking advantage of freely available ambient excitation sources. However, the literature has commonly reported insufficient input energy to excite the structure to obtain satisfactory modal identification results, especially in long-span concrete bridges. On the other hand, the use of forced vibration tests (FVTs) requires more economic resources. This paper presents the results of field measurements at optimally selected locations in VITs consisting of a 32-ton truck and a springboard with a height of 50 mm. AVTs using optimal sensor placement (OSP) provide similar results to VITs without considering OSP locations. Additionally, the VIT/AVT cost ratio is reduced to 2 since a shorter data collection time is achieved within a one-day (8 h) test framework, which minimizes temperature effects, thus leading to improvements in AVT identification results, especially in vertical modes.
Funder
Industrial University of Santander
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献