Effect of Nb Addition and Heat Input on Heat-Affected Zone Softening in High-Strength Low-Alloy Steel

Author:

Wang Feilong,Zhao Gang,Hou Yu,Lin Junpin,Li Ba,Jia Shujun,Liu Qingyou,Liu GangORCID,Yang Ping

Abstract

The effect of both Nb content and heat input on the softening phenomenon of the heat-affected zone (HAZ) of low-alloy high-strength steel was studied through welding thermal simulation experiments. The microstructure evolution, density variation of geometrically necessary dislocation, microhardness distribution and the second phase precipitation behavior in HAZ was characterized and analyzed by combining the optical microscope, scanning electron microscope, high-resolution transmission electron microscope with microhardness tests. The results showed that the softening appeared in the fine-grain HAZ (FGHAZ) of the low-alloy high-strength steel with the polygonal ferrite and bainite microstructure. With an increase in Nb content, the FGHAZ softening was inhibited even with high heat input; however, the hardness shows little variation. On the one hand, the increase in the Nb content increased the volume fraction of high-strength bainite in the FGHAZ. On the other hand, the remarkable strengthening was produced by the equally distributed precipitation nanoparticles. As a result, the two factors were the main reason for the solution of the FGHAZ softening problem in the low-alloyed high-strength steel with the mixed microstructure of ferrite and bainite.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3