Author:
Zhao Junsheng,Zhang Limin,Du Fengming,Yuan Xia,Wang Pengfei
Abstract
The microstructure evolution of Cu-Sn-P alloy subjected to hot deformation was researched through electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) in the present study. The results indicated that after hot deformation, grains perpendicular to the force direction were elongated, and mostly became deformed grains, and then exhibited an obvious hardening effect. The Cu-Sn-P alloy could be strain hardened during hot deformation, but, with recrystallization, a softening effect occurred. Changes in dislocation density, textures, and grain sizes play different roles in flow stress behaviors of Cu-Sn-P alloy, and the dislocation density has a more evident effect at low temperature. However, with increase in temperature, recrystallization softening gradually dominates. Low-angle grain boundaries (LABs) account for the majority of hot deformed microstructures of Cu-Sn-P alloy. High dislocation densities in these zones make it easy to initiate the dislocation slipping systems. Deformation is realized through dislocation slipping and the slipping of edge dislocation pairs. The dislocation pile-up zones have high distortion energies, and, thus, elements of diffusion and recrystallization nucleation can occur easily. At different temperatures, the maximum polar density of textures gradually increases, and there are preferred orientations of grains. At 500 °C, stacking faults accumulate and promote the growth of twins. The twin growth direction is mainly determined by the migration of high-angle grain boundaries (HABs) and the clustering of high-stress zones.
Funder
Key R&D Program International Science and Technology Cooperation Project of Shanxi Province
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献