Author:
Wang Ziteng,Li Junfeng,Yan Yonghong
Abstract
Common sound source localization algorithms focus on localizing all the active sources in the environment. While the source identities are generally unknown, retrieving the location of a speaker of interest requires extra effort. This paper addresses the problem of localizing a speaker of interest from a novel perspective by first performing time-frequency selection before localization. The speaker of interest, namely the target speaker, is assumed to be sparsely active in the signal spectra. The target speaker-dominant time-frequency regions are separated by a speaker-aware Long Short-Term Memory (LSTM) neural network, and they are sufficient to determine the Direction of Arrival (DoA) of the target speaker. Speaker-awareness is achieved by utilizing a short target utterance to adapt the hidden layer outputs of the neural network. The instantaneous DoA estimator is based on the probabilistic complex Watson Mixture Model (cWMM), and a weighted maximum likelihood estimation of the model parameters is accordingly derived. Simulative experiments show that the proposed algorithm works well in various noisy conditions and remains robust when the signal-to-noise ratio is low and when a competing speaker exists.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献