Affiliation:
1. State Grid Heilongjiang Electric Power Research Institute, Harbin 150030, China
2. Key Laboratory of Power Electronics for Energy Conservation and Drive Control of Hebei Province, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
3. State Grid Heilongjiang Electric Power Company Limited, Harbin 150000, China
Abstract
The high proportion of distributed photovoltaic (DPV) access has changed the traditional distribution network structure and operation mode, posing a huge threat to the stable operation and economy of the distribution network. Aiming at a reasonable access capacity of DPV in the distribution network, this paper proposes an economic access capacity evaluation method for DPV in the distribution network considering proper PV power curtailment. Firstly, a method for generating typical joint light intensity and load power operation scenarios based on an improved K-means clustering algorithm is proposed, which provides comprehensive scenario support for the evaluation. Secondly, based on active and reactive power regulation, this paper proposes a DPV access capacity enhancement method to improve the DPV access capacity. Thirdly, considering proper PV power curtailment, an evaluation model of DPV economic access capacity in the distribution network is established to solve the maximum DPV economic access capacity in the distribution network. And aiming at the nonlinear problem in the model, the second-order cone relaxation method is employed to transform the model into the second-order cone programming model, so as to solve the objective function conveniently and efficiently. Finally, based on the improved IEEE 33-node distribution network analysis, the results show that the proposed method can be more comprehensive and effective in evaluating the DPV economic access capacity in the distribution network, and proper PV power curtailment can significantly increase the DPV economic access capacity in the distribution network.
Funder
Science and Technology Project of State Grid Heilongjiang Electric Power Co., Ltd.
Hebei Natural Science Foundation