Data-Driven Classification and Logging Prediction of Mudrock Lithofacies Using Machine Learning: Shale Oil Reservoirs in the Eocene Shahejie Formation, Bonan Sag, Bohai Bay Basin, Eastern China

Author:

Chang Qiuhong1,Ruan Zhuang1ORCID,Yu Bingsong1,Bai Chenyang2ORCID,Fu Yanli1,Hou Gaofeng1

Affiliation:

1. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

2. School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

As the world’s energy demand continues to expand, shale oil has a substantial influence on the global energy reserves. The third submember of the Mbr 3 of the Shahejie Fm, characterized by complicated mudrock lithofacies, is one of the significant shale oil enrichment intervals of the Bohai Bay Basin. The classification and identification of lithofacies are key to shale oil exploration and development. However, the efficiency and reliability of lithofacies identification results can be compromised by qualitative classification resulting from an incomplete workflow. To address this issue, a comprehensive technical workflow for mudrock lithofacies classification and logging prediction was designed based on machine learning. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were conducted to realize the automatic classification of lithofacies, which can classify according to the internal relationship of the data without the disturbance of human factors and provide an accurate lithofacies result in a much shorter time. The PCA and HCA results showed that the third submember can be split into five lithofacies: massive argillaceous limestone lithofacies (MAL), laminated calcareous claystone lithofacies (LCC), intermittent lamellar argillaceous limestone lithofacies (ILAL), continuous lamellar argillaceous limestone lithofacies (CLAL), and laminated mixed shale lithofacies (LMS). Then, random forest (RF) was performed to establish the identification model for each of the lithofacies and the obtained model is optimized by grid search (GS) and K-fold cross validation (KCV), which could then be used to predict the lithofacies of the non-coring section, and the three validation methods showed that the accuracy of the GS–KCV–RF model were all above 93%. It is possible to further enhance the performance of the models by resampling, incorporating domain knowledge, and utilizing the mechanism of attention. Our method solves the problems of the subjective and time-consuming manual interpretation of lithofacies classification and the insufficient generalization ability of machine-learning methods in the previous works on lithofacies prediction research, and the accuracy of the model for mudrocks lithofacies prediction is also greatly improved. The lithofacies machine-learning workflow introduced in this study has the potential to be applied in the Bohai Bay Basin and comparable reservoirs to enhance exploration efficiency and reduce economic costs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3