A Dual Attention Convolutional Neural Network for Crop Classification Using Time-Series Sentinel-2 Imagery

Author:

Seydi Seyd TeymoorORCID,Amani MeisamORCID,Ghorbanian ArsalanORCID

Abstract

Accurate and timely mapping of crop types and having reliable information about the cultivation pattern/area play a key role in various applications, including food security and sustainable agriculture management. Remote sensing (RS) has extensively been employed for crop type classification. However, accurate mapping of crop types and extents is still a challenge, especially using traditional machine learning methods. Therefore, in this study, a novel framework based on a deep convolutional neural network (CNN) and a dual attention module (DAM) and using Sentinel-2 time-series datasets was proposed to classify crops. A new DAM was implemented to extract informative deep features by taking advantage of both spectral and spatial characteristics of Sentinel-2 datasets. The spectral and spatial attention modules (AMs) were respectively applied to investigate the behavior of crops during the growing season and their neighborhood properties (e.g., textural characteristics and spatial relation to surrounding crops). The proposed network contained two streams: (1) convolution blocks for deep feature extraction and (2) several DAMs, which were employed after each convolution block. The first stream included three multi-scale residual convolution blocks, where the spectral attention blocks were mainly applied to extract deep spectral features. The second stream was built using four multi-scale convolution blocks with a spatial AM. In this study, over 200,000 samples from six different crop types (i.e., alfalfa, broad bean, wheat, barley, canola, and garden) and three non-crop classes (i.e., built-up, barren, and water) were collected to train and validate the proposed framework. The results demonstrated that the proposed method achieved high overall accuracy and a Kappa coefficient of 98.54% and 0.981, respectively. It also outperformed other state-of-the-art classification methods, including RF, XGBOOST, R-CNN, 2D-CNN, 3D-CNN, and CBAM, indicating its high potential to discriminate different crop types.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3