High Spatial-Temporal PM2.5 Modeling Utilizing Next Generation Weather Radar (NEXRAD) as a Supplementary Weather Source

Author:

Yu XiaoheORCID,Lary David J.ORCID,Simmons Christopher S.,Wijeratne Lakitha O. H.ORCID

Abstract

PM2.5, a type of fine particulate with a diameter equal to or less than 2.5 micrometers, has been identified as a major source of air pollution, and is associated with many health issues. Research on utilizing various data sources, such as remote sensing and in situ sensors, for PM2.5 concentrations modeling remains a hot topic. In this study, the Next Generation Weather Radar (NEXRAD) is used as a supplementary weather data source, along with European Centre for Medium-Range Weather Forecasts (ECMWF), solar angles, and Geostationary Operational Environmental Satellite (GOES16) Aerosol Optical Depth (AOD) to model high spatial-temporal PM2.5 concentrations. PM2.5 concentrations as well as in situ weather condition variables are collected from the 31 sensors that are deployed in the Dallas Metropolitan area. Four machine learning models with different predictor variables are developed based on an ensemble approach. Since in situ weather observations are not widely available, ECMWF is used as an alternative data source for weather conditions in studies. Hence, the four established models are compared in three groups. Both models in this first group use weather variables collected from deployed sensors, but one uses NEXRAD and the other does not. In the second group, the two models use weather variables retrieved from ECMWF, one using NEXRAD and one without. In the third group, one model uses weather variables from ECMWF, and the other uses in situ weather variables, both without NEXRAD. The first two environmental groups investigate how NEXRAD can enhance model performances with weather variables collected from in situ observations and ECMWF, respectively. The third group explores how effective using ECMWF as an alternative source of weather conditions. Based on the results, the incorporation of NEXRAD achieves an R2 score of 0.86 and 0.83 for groups 1 and 2, respectively, for an improvement of 2.8% and 9.6% over those models without NEXRAD. For group three, the use of ECMWF as an alternative source of in situ weather observations results in a 0.13 R2 drop. For PM2.5 estimation, weather variables including precipitation, temperature, pressure, and surface pressure from ECMWF and deployed sensors, as well as NEXRAD velocity, are shown to be significant factors.

Funder

National Science Foundation CNS Division Of Computer and Network Systems

EPA

NSF

USAMRMC

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3