Experimental Breast Phantom Imaging with Metamaterial-Inspired Nine-Antenna Sensor Array

Author:

Islam Mohammad,Samsuzzaman Md,Islam Md,Kibria SalehinORCID

Abstract

An experimental system for early screening of a breast tumor is presented in this article. The proposed microwave imaging (MI) system consists of a moveable array of nine improved negative-index metamaterial (MTM)-loaded ultrawideband (UWB) antenna sensor with incorporation of a corresponding SRR (split-ring resonator) and CLS (capacitively loaded strip) structure, in a circular array, the stepper motor-based array-mounting stand, the adjustable phantom hanging platform, an RF switching system to control the receivers, and a personal computer-based signal processing and image reconstruction unit using MATLAB. The improved antenna comprises of four-unit cells along one axis, where an individual unit cell integrates a balancing SRR and CLS pair, which makes the antenna radiation omnidirectional over the operating frequencies. The electrical dimensions of this proposed antenna are 0.28λ × 0.20λ × 0.016λ, measured at the lowest operating frequency of 2.97 GHz as the operating bandwidth of this is in between 2.97–15 GHz (134.82% bandwidth), with stable directional radiation pattern. SP8T 8 port switch is used to enable the eight receiver antennas to sequentially send a 3–8.0 GHz microwave signal to capture the backscattered signal by MATLAB software. A low-cost realistic homogeneous breast phantom with tumor material is developed and measured to test the capability of the imaging system to detect the breast tumors. A post-processing delay-multiply-and-sum (DMAS) algorithm is used to process the recorded backscatter signal to get an image of the breast phantom, and to accurately identify the existence and located area of multiple breast tumor tissues.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3