Cross-Modal Segmentation Network for Winter Wheat Mapping in Complex Terrain Using Remote-Sensing Multi-Temporal Images and DEM Data

Author:

Wang Nan1,Wu Qingxi1,Gui Yuanyuan1,Hu Qiao1,Li Wei1

Affiliation:

1. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Abstract

Winter wheat is a significant global food crop, and it is crucial to monitor its distribution for better agricultural management, land planning, and environmental sustainability. However, the distribution style of winter wheat planting fields is not consistent due to different terrain conditions. In mountainous areas, winter wheat planting units are smaller in size and fragmented in distribution compared to plain areas. Unfortunately, most crop-mapping research based on deep learning ignores the impact of topographic relief on crop distribution and struggles to handle hilly areas effectively. In this paper, we propose a cross-modal segmentation network for winter wheat mapping in complex terrain using remote-sensing multi-temporal images and DEM data. First, we propose a diverse receptive fusion (DRF) module, which applies a deformable receptive field to optical images during the feature fusion process, allowing it to match winter wheat plots of varying scales and a fixed receptive field to the DEM to extract evaluation features at a consistent scale. Second, we developed a distributed weight attention (DWA) module, which can enhance the feature intensity of winter wheat, thereby reducing the omission rate of planting areas, especially for the small-sized regions in hilly terrain. Furthermore, to demonstrate the performance of our model, we conducted extensive experiments and ablation studies on a large-scale dataset in Lanling county, Shandong province, China. Our results show that our proposed CM-Net is effective in mapping winter wheat in complex terrain.

Funder

Science for a Better Development ofInner Mongolia Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3