SSAformer: Spatial–Spectral Aggregation Transformer for Hyperspectral Image Super-Resolution

Author:

Wang Haoqian123,Zhang Qi4ORCID,Peng Tao1,Xu Zhongjie123,Cheng Xiangai123,Xing Zhongyang123ORCID,Li Teng1ORCID

Affiliation:

1. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China

2. State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China

3. Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China

4. The State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

The hyperspectral image (HSI) distinguishes itself in material identification through its exceptional spectral resolution. However, its spatial resolution is constrained by hardware limitations, prompting the evolution of HSI super-resolution (SR) techniques. Single HSI SR endeavors to reconstruct high-spatial-resolution HSI from low-spatial-resolution inputs, and recent progress in deep learning-based algorithms has significantly advanced the quality of reconstructed images. However, convolutional methods struggle to extract comprehensive spatial and spectral features. Transformer-based models have yet to harness long-range dependencies across both dimensions fully, thus inadequately integrating spatial and spectral data. To solve the above problem, in this paper, we propose a new HSI SR method, SSAformer, which merges the strengths of CNNs and Transformers. It introduces specially designed attention mechanisms for HSI, including spatial and spectral attention modules, and overcomes the previous challenges in extracting and amalgamating spatial and spectral information. Evaluations on benchmark datasets show that SSAformer surpasses contemporary methods in enhancing spatial details and preserving spectral accuracy, underscoring its potential to expand HSI’s utility in various domains, such as environmental monitoring and remote sensing.

Funder

High-level Talents Programme of National University of Defense Technology

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3