One-Step Microwave-Assisted Hydrothermal Preparation of Zn-ZnO(Nw)-rGO Electrodes for Supercapacitor Applications

Author:

Bandas Cornelia1ORCID,Nicolaescu Mircea12,Popescu Mina Ionela13,Orha Corina1,Căprărescu Simona4,Lazau Carmen1

Affiliation:

1. Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 1 Plautius Andronescu Street, 300254 Timisoara, Romania

2. Department of Materials and Manufacturing Engineering, Faculty of Mechanical Engineering, Politehnica University of Timisoara Mihai Viteazu 1, 300222 Timisoara, Romania

3. Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, Blv. Vasile Parvan 6, 300223 Timisoara, Romania

4. Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, Polizu Street No. 1–7, 011061 Bucharest, Romania

Abstract

Zn-ZnO(Nw)-rGO hybrid electrodes for supercapacitor applications were successfully prepared in situ by a one-step microwave-assisted hydrothermal method by deposition of reduced graphene oxide (rGO) on the structure of ZnO nanowires grown on the Zn foil. During the hydrothermal treatment, two processes occur the reduction of graphene oxide (GO) and the deposition of rGO on the Zn-ZnO(Nw) support. The growth of ZnO nanowires was achieved by thermal oxidation below the melting point of the Zn foil in a controlled atmosphere. The as-obtained electrodes were assessed for structural, optical, and morphological properties by X-ray diffraction, Raman spectroscopy, ultraviolet-visible spectroscopy, SEM microscopy, and EDX analysis. The supercapacitor properties of the Zn-ZnO(Nw)-rGO hybrid electrodes were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge analysis. The CV curve reveals that the Zn-ZnO(Nw)-rGO hybrid structures work as negative electrodes and exhibit a non-ideal rectangle-like shape, suggesting that the as-synthesized structure behaves as a pseudo-capacitor. A maximum capacitance was determined to be 395.79 mF cm−2 at a scan rate of 5 mV s−1. Based on GCD analysis, the maximum specific capacitance of 145.59 mF cm−2 was achieved at a low power density of 2 mA cm−2. The cycle life assessment of the Zn-ZnO(Nw)-rGO hybrid electrode over a 250-cycle number was performed by CV and GCD analysis. The maximum retention rate of 120.86% was achieved from GCD analysis over 250 cycles for the Zn-ZnO(Nw)-rGO hybrid electrode.

Funder

Ministry of Research, Innovation, and Digitization

PNCDI III

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3