Assessing Forest Species Diversity in Ghana’s Tropical Forest Using PlanetScope Data

Author:

Njomaba Elisha1ORCID,Ofori James Nana2ORCID,Guuroh Reginald Tang23,Aikins Ben Emunah4,Nagbija Raymond Kwame5,Surový Peter1ORCID

Affiliation:

1. Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic

2. Biodiversity Research/Systematic Botany, University of Potsdam, Maulbeerallee 1, 14469 Potsdam, Germany

3. CSIR-Forestry Research Institute of Ghana, Kumasi P.O. Box UP 63, Ghana

4. School of Public Health, College of Health Sciences, University of Ghana, Accra P.O. Box LG 13, Ghana

5. Faculty of Geoinformation Science & Earth Observation, Department of Natural Resource Management, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands

Abstract

This study utilized a remotely sensed dataset with a high spatial resolution of 3 m to predict species diversity in the Bobiri Forest Reserve (BFR), a moist semi-deciduous tropical forest in Ghana. We conducted a field campaign of tree species measurements to achieve this objective for species diversity estimation. Thirty-five field plots of 50 m × 20 m were established, and the most dominant tree species within the forest were identified. Other measurements, such as diameter at breast height (DBH ≥ 5 cm), tree height, and each plot’s GPS coordinates, were recorded. The following species diversity indices were estimated from the field measurements: Shannon–Wiener (H′), Simpson diversity index (D2), species richness (S), and species evenness (J′). The PlanetScope surface reflectance data at 3 m spatial resolution was acquired and preprocessed for species diversity prediction. The spectral/pixel information of all bands, except the coastal band, was extracted for further processing. Vegetation indices (VIs) (NDVI—normalized difference vegetation index, EVI—enhanced vegetation index, SRI—simple ratio index, SAVI—soil adjusted vegetation index, and NDRE—normalized difference red edge index) were also calculated from the spectral bands and their pixel value extracted. A correlation analysis was then performed between the spectral bands and VIs with the species diversity index. The results showed that spectral bands 6 (red) and 2 (blue) significantly correlated with the two main species diversity indices (S and H′) due to their influence on vegetation properties, such as canopy biomass and leaf chlorophyll content. Furthermore, we conducted a stepwise regression analysis to investigate the most important spectral bands to consider when estimating species diversity from the PlanetScope satellite data. Like the correlation results, bands 6 (red) and 2 (blue) were the most important bands to be considered for predicting species diversity. The model equations from the stepwise regression were used to predict tree species diversity. Overall, the study’s findings emphasize the relevance of remotely sensed data in assessing the ecological condition of protected areas, a tool for decision-making in biodiversity conservation.

Funder

Faculty of Forestry and Wood Sciences—FFWS, Czech University of Life Sciences Prague

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3