Experimental Investigation of Heat Transfer with Various Aqueous Mono/Hybrid Nanofluids in a Multi-Channel Heat Exchanger

Author:

Plant Robert,Hodgson GregoryORCID,Impellizzeri StefaniaORCID,Saghir M. ZiadORCID

Abstract

The use of nanofluids for heat transfer has been examined in recent years as a potential method for augmentation of heat transfer in different systems. Often, the use of nanoparticles in a working fluid does not disrupt the system in significant ways. As a result of this general improvement of a system’s heat transfer capabilities with relatively few detrimental factors, nanofluids and hybrid nanofluids have become an area of considerable research interest. One subcategory of this research area that has been under consideration is the concentration of each of the nanoparticles, leading to either successful augmentation or hindrance. The focus of the current experimental investigation was to examine the resulting impact on heat transfer performance as a result of each nanofluid implemented in an identical three-channel heat exchanger. This work examined the experimental impacts of 0.5 wt% titania (TiO2), 1 wt% titania, a mixture of 0.5 wt% titania and 0.5% silica, and a 0.5 wt% hybrid nanofluid of titania synthetically modified with copper-based nanostructures (Cu + TiO2). The experimental work examined a range of heat flux densities from 3.85 W cm−2 to 7.51 W cm−2, and varying flow rates. Each of the nanoparticles were suspended in distilled water and then mixed using an ultrasonic water bath. The performances of each nanofluid were determined using the local Nusselt number to evaluate the possible thermal enhancement offered by each nanofluid mixture. While the 0.5 wt% Cu + TiO2 hybrid nanofluid did significantly increase performance, the use of a 0.5 wt% TiO2/SiO2 double nanofluid in a three-channel heat exchanger exhibited the greatest performance enhancement, with an average increase of 37.3% as compared to water.

Funder

Qatar Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3