Polymer Gels Used in Oil–Gas Drilling and Production Engineering

Author:

Han Jinliang,Sun Jinsheng,Lv Kaihe,Yang Jingbin,Li Yuhong

Abstract

Polymer gels are widely used in oil–gas drilling and production engineering for the purposes of conformance control, water shutoff, fracturing, lost circulation control, etc. Here, the progress in research on three kinds of polymer gels, including the in situ crosslinked polymer gel, the pre-crosslinked polymer gel and the physically crosslinked polymer gel, are systematically reviewed in terms of the gel compositions, crosslinking principles and properties. Moreover, the advantages and disadvantages of the three kinds of polymer gels are also comparatively discussed. The types, characteristics and action mechanisms of the polymer gels used in oil-gas drilling and production engineering are systematically analyzed. Depending on the crosslinking mechanism, in situ crosslinked polymer gels can be divided into free-radical-based monomer crosslinked gels, ionic-bond-based metal cross-linked gels and covalent-bond-based organic crosslinked gels. Surface crosslinked polymer gels are divided into two types based on their size and gel particle preparation method, including pre-crosslinked gel particles and polymer gel microspheres. Physically crosslinked polymer gels are mainly divided into hydrogen-bonded gels, hydrophobic association gels and electrostatic interaction gels depending on the application conditions of the oil–gas drilling and production engineering processes. In the field of oil–gas drilling engineering, the polymer gels are mainly used as drilling fluids, plugging agents and lost circulation materials, and polymer gels are an important material that are utilized for profile control, water shutoff, chemical flooding and fracturing. Finally, the research potential of polymer gels in oil–gas drilling and production engineering is proposed. The temperature resistance, salinity resistance, gelation strength and environmental friendliness of polymer gels should be further improved in order to meet the future technical requirements of oil–gas drilling and production.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3