Overexpression of a Novel ROP Gene from the Banana (MaROP5g) Confers Increased Salt Stress Tolerance

Author:

Miao Hongxia,Sun Peiguang,Liu Juhua,Wang Jingyi,Xu Biyu,Jin Zhiqiang

Abstract

Rho-like GTPases from plants (ROPs) are plant-specific molecular switches that are crucial for plant survival when subjected to abiotic stress. We identified and characterized 17 novel ROP proteins from Musa acuminata (MaROPs) using genomic techniques. The identified MaROPs fell into three of the four previously described ROP groups (Groups II–IV), with MaROPs in each group having similar genetic structures and conserved motifs. Our transcriptomic analysis showed that the two banana genotypes tested, Fen Jiao and BaXi Jiao, had similar responses to abiotic stress: Six genes (MaROP-3b, -5a, -5c, -5f, -5g, and -6) were highly expressed in response to cold, salt, and drought stress conditions in both genotypes. Of these, MaROP5g was most highly expressed in response to salt stress. Co-localization experiments showed that the MaROP5g protein was localized at the plasma membrane. When subjected to salt stress, transgenic Arabidopsis thaliana overexpressing MaROP5g had longer primary roots and increased survival rates compared to wild-type A. thaliana. The increased salt tolerance conferred by MaROP5g might be related to reduced membrane injury and the increased cytosolic K+/Na+ ratio and Ca2+ concentration in the transgenic plants as compared to wild-type. The increased expression of salt overly sensitive (SOS)-pathway genes and calcium-signaling pathway genes in MaROP5g-overexpressing A. thaliana reflected the enhanced tolerance to salt stress by the transgenic lines in comparison to wild-type. Collectively, our results suggested that abiotic stress tolerance in banana plants might be regulated by multiple MaROPs, and that MaROP5g might enhance salt tolerance by increasing root length, improving membrane injury and ion distribution.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3