Determination of the Peak Hour Ridership of Metro Stations in Xi’an, China Using Geographically-Weighted Regression

Author:

Yu Lijie,Cong Yarong,Chen Kuanmin

Abstract

The ridership of a metro station during a city’s peak hour is not always the same as that during the station’s own peak hour. To investigate this inconsistency, this study introduces the peak deviation coefficient to describe this phenomenon. Data from 88 metro stations in Xi’an, China, are used to analyze the peak deviation coefficient based on the geographically weighted regression model. The results demonstrate that when the land around a metro station is mainly land for work, primary and middle schools, and residences, its station’s peak hour is consistent with the city’s peak hour. Additionally, the station’s peak hour is more likely to deviate from the city’s peak hour for suburban stations. There are two ridership options when designing stations, namely the extra peak hour ridership during a city’s peak hour and that during a station’s peak hour, and the larger of the two is used to design metro stations. The mixed land use ratio must be considered in urban land use planning, because although non-commuting land can mitigate the traffic pressure of a city’s peak hour, it may cause the deviation of the station’s peak hours from that of the city.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference57 articles.

1. Associates, Parsons Brinckerhoff, KFH Group. Transit Capacity and Quality of Service Manual;Kittelson,2013

2. Code for Design of Metrohttp://www.jianbiaoku.com/webarbs/book/1027/1073295.shtml

3. Traffic volume forecast for xi’an urban rapid rail transit;Ma;Urban Rapid Rail Transit,2006

4. Application of geographically weighted regression to the direct forecasting of transit ridership at station-level

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3