Mapping and Pre- and Post-Failure Analyses of the April 2019 Kantutani Landslide in La Paz, Bolivia, Using Synthetic Aperture Radar Data

Author:

Shan Monan1,Raspini Federico2,Del Soldato Matteo2ORCID,Cruz Abel3,Casagli Nicola2ORCID

Affiliation:

1. Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China

2. Earth Sciences Department, University of Firenze, Via La Pira 4, 50121 Firenze, Italy

3. Laboratorio de Geotecnia-GTUMSS, Universidad Mayor de San Simon, Avenida Ballivian Esquina Reza 591, Cochabamba 2500, Bolivia

Abstract

Urban landslides have brought challenges to developing countries undergoing urbanization. Rapid approaches to assess ground deformation are required when facing the challenge of insufficient geological survey methods. Additionally, it is indeed a challenge to map landslide-affected areas, especially precipitation-induced landslides, through optical remote sensing methods. This study applied SAR change detection methods to map the slope failure event of the San Jorge Kantutani landfill site in La Paz, Bolivia, which occurred in April 2019, and Multi-Temporal Synthetic Aperture Radar Interferometry (MTInSAR) methods to assess pre- and post-failure ground stability related to this event. We found that the amplitude information of high-resolution COSMO-SkyMed SAR imagery and its texture information can be very useful in landslide mapping, especially in situations in which optical images are not available because of complex meteorological conditions and the similar spectral characteristics between the original land cover and landslide deposits. The MTInSAR analyses found that there was already significant deformation of more than 50 mm/year along the slope direction over this site before the landslide, and such deformation could be clearly discriminated from the surrounding environment. After the landslide event and the remobilization of the landslide deposit, the slope still shows a deformation velocity of more than 30 mm/year. The SAR amplitude change detection and MTInSAR fully exploited the SAR data in landslide studies and were useful in back analyzing the occurred landslides; this could be a good method for monitoring the ground stability of La Paz or even on a national scale over the long term for reducing the catastrophic effects of geological hazards in this landslide-prone city.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3