Remote Sensing Road Extraction by Road Segmentation Network

Author:

Tan Jiahai,Gao Ming,Yang Kai,Duan Tao

Abstract

Road extraction from remote sensing images has attracted much attention in geospatial applications. However, the existing methods do not accurately identify the connectivity of the road. The identification of the road pixels may be interfered with by the abundant ground such as buildings, trees, and shadows. The objective of this paper is to enhance context and strip features of the road by designing UNet-like architecture. The overall method first enhances the context characteristics in the segmentation step and then maintains the stripe characteristics in a refinement step. The segmentation step exploits an attention mechanism to enhance the context information between the adjacent layers. To obtain the strip features of the road, the refinement step introduces the strip pooling in a refinement network to restore the long distance dependent information of the road. Extensive comparative experiments demonstrate that the proposed method outperforms other methods, achieving an overall accuracy of 98.25% on the DeepGlobe dataset, and 97.68% on the Massachusetts dataset.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3