Abstract
The work function variations of NO2 and H2S molecules on Pd-adsorbed ZnGa2O4(111) were calculated using first-principle calculations. For the bonding of a nitrogen atom from a single NO2 molecule to a Pd atom, the maximum work function change was +1.37 eV, and for the bonding of two NO2 molecules to a Pd atom, the maximum work function change was +2.37 eV. For H2S adsorption, the maximum work function change was reduced from −0.90 eV to −1.82 eV for bonding sulfur atoms from a single and two H2S molecules to a Pd atom, respectively. Thus, for both NO2 and H2S, the work function change increased with an increase in gas concentration, showing that Pd-decorated ZnGa2O4(111) is a suitable material in NO2/H2S gas detectors.
Funder
Ministry of Science and Technology, Taiwan
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献