An Applicable Predictive Maintenance Framework for the Absence of Run-to-Failure Data

Author:

Kim DonghwanORCID,Lee Seungchul,Kim Daeyoung

Abstract

As technology advances, the equipment becomes more complicated, and the importance of the Prognostics and Health Management (PHM) to monitor the condition of the equipment has risen. In recent years, various methodologies have emerged. With the development of computing technology, methodologies using machine learning and deep learning are gaining attention, in particular. As these algorithms become more advanced, the performance of detecting anomalies and predicting failures has improved dramatically. However, most of the studies are cases that depend on simulation data or assumed abnormal conditions. In addition, regardless of the existence of run-to-failure data, the methodologies are difficult to apply to the industrial site directly. To solve this problem, we propose a Predictive Maintenance (PdM) framework based on unsupervised learning in this paper, which can be applied directly in the industrial field regardless of run-to-failure data. The proposed framework consists of data acquisition, preprocessing data, constructing a Health Index, and predicting the remaining useful life. We propose a framework that can create and monitor models even when there are no accumulated run-to-failure data. The proposed framework was conducted in two different real-life cases, and the usefulness and applicability of the proposed methodology were verified.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3