Abstract
Water vapor fluxes play a key role in the energy budget of the atmosphere, and better flux measurements are needed to improve our understanding of the formation of clouds and storms. Large-scale measurements of these fluxes are possible by employing the eddy correlation (EC) method from an aircraft. A hygrometer used for such measurements needs to deliver a temporal resolution of at least 10 Hz while reliably operating in the harsh conditions on the exterior of an aircraft. Here, we present a design concept for a calibration-free, first-principles, open-path dTDLAS hygrometer with a planar, circular and rotationally symmetric multipass cell with new, angled coupling optics. From our measurements, the uncertainty of the instrument is estimated to be below 4.5% (coverage factor k = 1). A static intercomparison between a dTDLAS prototype of the new optics setup and a traceable dew point mirror hygrometer was conducted and showed a systematic relative deviation of 2.6% with a maximal relative error of 2.2%. Combined with a precision of around 1 ppm H2O at tropospheric conditions, the newly designed setup fulfills the static precision and accuracy requirements of the proposed airborne EC hygrometer.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献