Imperfect Wheat Grain Recognition Combined with an Attention Mechanism and Residual Network

Author:

Zhang Weiwei,Ma HuiminORCID,Li Xiaohong,Liu Xiaoli,Jiao Jun,Zhang Pengfei,Gu Lichuan,Wang Qi,Bao Wenxia,Cao Shengnan

Abstract

Intelligent detection of imperfect wheat grains based on machine vision is of great significance to correctly and rapidly evaluate wheat quality. There is little difference between the partial characteristics of imperfect and perfect wheat grains, which is a key factor limiting the classification and recognition accuracy of imperfect wheat based on a deep learning network model. In this paper, we propose a method for imperfect wheat grains recognition combined with an attention mechanism and residual network (ResNet), and verify its recognition accuracy by adding an attention mechanism module into different depths of residual network. Five residual networks with different depths (18, 34, 50, 101, and 152) were selected for the experiment, it was found that the recognition accuracy of each network model was improved with the attention mechanism, and the average recognition rate of ResNet-50 with the addition of the attention mechanism reached 96.5%. For ResNet-50 with the attention mechanism, the optimal learning rate was further screened as 0.0003. The average recognition accuracy reached 97.5%, among which the recognition rates of scab wheat grains, insect-damaged wheat grains, sprouted wheat grains, mildew wheat grains, broken wheat grains, and perfect wheat grains reached 97%, 99%, 99%, 95%, 96%, and 99% respectively. This work can provide guidance for the detection and recognition of imperfect wheat grains using machine vision.

Funder

马慧敏

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3