Study of the Preparation Phase of Turkey’s Powerful Earthquake (6 February 2023) by a Geophysical Multi-Parametric Fuzzy Inference System

Author:

Akhoondzadeh Mehdi1ORCID,Marchetti Dedalo2ORCID

Affiliation:

1. Photogrammetry and Remote Sensing Department, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, North Amirabad Ave., Tehran 1417614411, Iran

2. College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China

Abstract

On 6 February 2023, a powerful earthquake at the border between Turkey and Syria caused catastrophic consequences and was, unfortunately, one of the deadliest earthquakes of the recent decades. The moment magnitude of the earthquake was estimated to be 7.8, and it was localized in the Kahramanmaraş region of Turkey. This article aims to investigate the behavior of more than 50 different lithosphere–atmosphere–ionosphere (LAI) anomalies obtained from satellite data and different data services in a time period of about six months before the earthquake to discuss the possibility of predicting the mentioned earthquake by an early warning system based on various geophysical parameters. In this study, 52 time series covering six months of data were acquired with: (i) three identical satellites of the Swarm constellation (Alpha (A), Bravo (B) and Charlie (C); and the analyzed parameters: electron density (Ne) and temperature (Te), magnetic field scalar (F) and vector (X, Y and Z) components); (ii) the Google Earth Engine (GEE) platform service data (including ozone, water vapor and surface temperature), (iii) the Giovanni data service (including the aerosol optical depth (AOD), methane, carbon monoxide and ozone); and (iv) the USGS earthquake catalogue (including the daily seismic rate and maximum magnitude for each day), around the location of the seismic event from 1 September 2022 to 17 February 2023, and these were analyzed. The results show that the number of seismic anomalies increased since about 33 days before the earthquake and reached a peak, i.e., the highest number, one day before. The findings of implementing the proposed predictor based on the Mamdani fuzzy inference system (FIS) emphasize that the occurrence of a powerful earthquake could be predicted from about nine days to one day before the earthquake due to the clear increase in the number of seismo-LAI anomalies. However, this study has still conducted a posteriori, knowing the earthquake’s epicenter and magnitude. Therefore, based on the results of this article and similar research, we emphasize the urgency of the creation of early earthquake warning systems in seismic-prone areas by investigating the data of different services, such as GEE, Giovanni and various other global satellite platforms services, such as Swarm. Finally, the path toward earthquake prediction is still long, and the goal is far, but the present results support the idea that this challenging goal could be achieved in the future.

Funder

Chinese Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3