Unmanned Aerial Vehicle-Based Structure from Motion Technique for Precise Snow Depth Retrieval—Implication for Optimal Ground Control Point Deployment Strategy

Author:

Shu Song1,Yu Ok-Youn2,Schoonover Chris2,Liu Hongxing3,Yang Bo4ORCID

Affiliation:

1. Department of Geography and Planning, Appalachian State University, Boone, NC 28608, USA

2. Department of Sustainable Technology and the Built Environment, Appalachian State University, Boone, NC 28608, USA

3. Department of Geography, The University of Alabama, Tuscaloosa, AL 35487, USA

4. Department of Urban and Regional Planning, San Jose State University, San Jose, CA 95192, USA

Abstract

Unmanned aerial vehicle (UAV)-based snow depth is mapped as the difference between snow-on and snow-off digital surface models (DSMs), which are derived using the structure from motion (SfM) technique with ground control points (GCPs). In this study, we evaluated the impacts of the quality and deployment of GCPs on the accuracy of snow depth estimates. For 15 GCPs in our study area, we surveyed each of their coordinates using an ordinary global positioning system (GPS) and a differential GPS, producing two sets of GCP measurements (hereinafter, the low-accuracy and high-accuracy sets). The two sets of GCP measurements were then incorporated into SfM processing of UAV images by following two deployment strategies to create snow-off and snow-on DSMs and then to retrieve snow depth. In Strategy A, the same GCP measurements in each set were used to create both the snow-on and snow-off DSMs. In Strategy B, each set of GCP measurements was divided into two sub-groups, one sub-group for creating snow-on DSMs and the other sub-group for snow-off DSMs. The accuracy of snow depth estimates was evaluated in comparison to concurrent in-situ snow depth measurements. The results showed that Strategy A, using both the low-accuracy and high-accuracy sets, generated accurate snow depth estimates, while in Strategy B, only the high-accuracy set could generate reliable snow depth estimates. The results demonstrated that the deployment of GCPs had a significant influence on UAV-based SfM snow depth retrieval. When accurate GCP measurements cannot be guaranteed (e.g., in mountainous regions), Strategy A is the optimal option for producing reliable snow depth estimates. When highly accurate GCP measurements are available (e.g., collected by differential GPS in open space), both deployment strategies can produce accurate snow depth estimates.

Funder

College of Arts and Sciences Research/Proposal Development Summer Grant at Appalachian State University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3