Comparative Study on Remote Sensing Methods for Forest Height Mapping in Complex Mountainous Environments

Author:

Huang Xiang1ORCID,Cheng Feng1,Wang Jinliang1ORCID,Yi Bangjin2,Bao Yinli3

Affiliation:

1. Faculty of Geography, Yunnan Normal University, Kunming 650500, China

2. Yunnan Institute of Geological Sciences, Kunming 650051, China

3. Kunming Surveying and Mapping Management Center, Kunming 650500, China

Abstract

Forest canopy height is one of the critical parameters for carbon sink estimation. Although spaceborne lidar data can obtain relatively high precision canopy height on discrete light spots, to obtain continuous canopy height, the integration of optical remote sensing image data is required to achieve “from discrete to continuous” extrapolation based on different prediction models (parametric model and non-parametric model). This study focuses on the Shangri-La area and seeks to assess the practical applicability of two predictive models under complex mountainous conditions, using a combination of active and passive remote sensing data from ICESat-2 and Sentinel-2. The research aims to enhance our understanding of the effectiveness of these models in addressing the unique challenges presented by mountainous terrain, including rugged topography, variable vegetation cover, and extreme weather conditions. Through this work, we hope to contribute to the development of improved geospatial prediction algorithms for mountainous regions worldwide. The results show the following: (1) the fitting effect of the selected parametric model (empirical function regression) is poor in the area of Quercus acutissima and Pinus yunnanensis; (2) evaluation of the importance of each explanatory variable in the non-parametric model (random forest regression) shows that topographic and meteorological factors play a dominant role in canopy height inversion; (3) when random forest regression is applied to the inversion of canopy height, there is often a problem of error accumulation, which is of particular concern to the Quercus acutissima and Pinus yunnanensis; (4) the random forest regression with the optimal features has relatively higher precision by comparing the inversion accuracy of canopy height data of the empirical function regression, random forest regression with all features, and random forest regression with the optimal features in the study area, i.e., R2 (coefficient of determination) = 0.865 and RMSE (root mean square error) = 3.184 m. In contrast, the poor estimation results reflected by the empirical function regression, mainly resulting from the lack of consideration of topographic and meteorological factors, are not applicable to the inversion of canopy height under complex topographic conditions.

Funder

Yunnan Province Applied Basic Research Program Project

National Natural Science Foundation of China

Geology and Mineral Resources Exploration Development Bureau of Yunnan Province Science and Technology Innovation Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3